Abstract

Abstract. Many deltas are threatened by accelerated soil subsidence, sea-level rise, increasing river discharge, and sediment starvation. Effective delta restoration and effective river management require a thorough understanding of the mechanisms of sediment deposition, erosion, and their controls. Sediment dynamics has been studied at floodplains and marshes, but little is known about the sediment dynamics and budget of newly created wetlands. Here we take advantage of a recently opened tidal freshwater system to study both the mechanisms and controls of sediment deposition and erosion in newly created wetlands. We quantified both the magnitude and spatial patterns of sedimentation and erosion in a former polder area in which water and sediment have been reintroduced since 2008. Based on terrestrial and bathymetric elevation data, supplemented with field observations of the location and height of cut banks and the thickness of the newly deposited layer of sediment, we determined the sediment budget of the study area for the period 2008–2015. Deposition primarily took place in channels in the central part of the former polder area, whereas channels near the inlet and outlet of the area experienced considerable erosion. In the intertidal area, sand deposition especially takes place at low-lying locations close to the channels. Mud deposition typically occurs further away from the channels, but sediment is in general uniformly distributed over the intertidal area, due to the presence of topographic irregularities and micro-topographic flow paths. Marsh erosion does not significantly contribute to the total sediment budget, because wind wave formation is limited by the length of the fetch. Consecutive measurements of channel bathymetry show a decrease in erosion and deposition rates over time, but the overall results of this study indicate that the area functions as a sediment trap. The total contemporary sediment budget of the study area amounts to 35.7×103 m3 year−1, which corresponds to a net area-averaged deposition rate of 6.1 mm year−1. This is enough to compensate for the actual rates of sea-level rise and soil subsidence in the Netherlands.

Highlights

  • Many deltas in the world cope with drowning and loss of delta land due to flood-protected polders, dams, and embankments of channels, which result in accelerated soil subsidence and sediment starvation (Ibáñez et al, 1997; Syvitski and Saito, 2007; Ibáñez et al, 2014)

  • This paper presents the first results of a larger field research project examining mechanisms and controls of sediment deposition and erosion in the Biesbosch tidal freshwater wetland (TFW)

  • For the sandy sediment deposited in channels or eroded from the island, we used a bulk density of 1.47 g cm−3

Read more

Summary

Introduction

Many deltas in the world cope with drowning and loss of delta land due to flood-protected polders, dams, and embankments of channels, which result in accelerated soil subsidence and sediment starvation (Ibáñez et al, 1997; Syvitski and Saito, 2007; Ibáñez et al, 2014). The urgency of this problem is enhanced by sea-level rise (Syvitski, 2008) or increasing river discharge. Most deltas are valuable and densely populated because of their ideal location for harbors, agriculture, aquaculture, and tourism (Kirwan and Megonigal, 2013; Ibáñez et al, 2014) They encompass vast wetland areas of great ecological value. River delta management has recently been shifting from the implementation of these strong regulations towards the control of a more natural system where dynamic pro-

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call