Abstract

Trypan blue dye exclusion-based cell viability measurements are highly dependent upon image quality and consistency. In order to make measurements repeatable, one must be able to reliably capture images at a consistent focal plane, and with signal-to-noise ratio within appropriate limits to support proper execution of image analysis routines. Imaging chambers and imaging systems used for trypan blue analysis can be inconsistent or can drift over time, leading to a need to assure the acquisition of images prior to automated image analysis. Although cell-based autofocus techniques can be applied, the heterogeneity and complexity of the cell samples can make it difficult to assure the effectiveness, repeatability and accuracy of the routine for each measurement. Instead of auto-focusing on cells in our images, we add control beads to the images, and use them to repeatedly return to a reference focal plane. We use bead image features that have stable profiles across a wide range of focal values and exposure levels. We created a predictive model based on image quality features computed over reference datasets. Because the beads have little variation, we can determine the reference plane from bead image features computed over a single-shot image and can reproducibly return to that reference plane with each sample. The achieved accuracy (over 95%) is within the limits of the actuator repeatability. We demonstrate that a small number of beads (less than 3 beads per image) is needed to achieve this accuracy. We have also developed an open-source Graphical User Interface called Bead Benchmarking-Focus And Intensity Tool (BB-FAIT) to implement these methods for a semi-automated cell viability analyser.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call