Abstract

BackgroundWith international concern over emerging infectious diseases (EID) and bioterrorist attacks, public health is being required to have early outbreak detection systems. A disease surveillance team was organized to establish a hospital emergency department-based syndromic surveillance system (ED-SSS) capable of automatically transmitting patient data electronically from the hospitals responsible for emergency care throughout the country to the Centers for Disease Control in Taiwan (Taiwan-CDC) starting March, 2004. This report describes the challenges and steps involved in developing ED-SSS and the timely information it provides to improve in public health decision-making.MethodsBetween June 2003 and March 2004, after comparing various surveillance systems used around the world and consulting with ED physicians, pediatricians and internal medicine physicians involved in infectious disease control, the Syndromic Surveillance Research Team in Taiwan worked with the Real-time Outbreak and Disease Surveillance (RODS) Laboratory at the University of Pittsburgh to create Taiwan's ED-SSS. The system was evaluated by analyzing daily electronic ED data received in real-time from the 189 hospitals participating in this system between April 1, 2004 and March 31, 2005.ResultsTaiwan's ED-SSS identified winter and summer spikes in two syndrome groups: influenza-like illnesses and respiratory syndrome illnesses, while total numbers of ED visits were significantly higher on weekends, national holidays and the days of Chinese lunar new year than weekdays (p < 0.001). It also identified increases in the upper, lower, and total gastrointestinal (GI) syndrome groups starting in November 2004 and two clear spikes in enterovirus-like infections coinciding with the two school semesters. Using ED-SSS for surveillance of influenza-like illnesses and enteroviruses-related infections has improved Taiwan's pandemic flu preparedness and disease control capabilities.ConclusionTaiwan's ED-SSS represents the first nationwide real-time syndromic surveillance system ever established in Asia. The experiences reported herein can encourage other countries to develop their own surveillance systems. The system can be adapted to other cultural and language environments for better global surveillance of infectious diseases and international collaboration.

Highlights

  • With international concern over emerging infectious diseases (EID) and bioterrorist attacks, public health is being required to have early outbreak detection systems

  • Experiences from Planning to Implementation of the Taiwan's emergency department-based syndromic surveillance system (ED-SSS) As of December 2005, Taiwan's ED-SSS had the cooperation of 187 hospitals distributed across northern, central, eastern and southern Taiwan (Figure 2)

  • We decided to capture only parameters usually collected by the hospitals during examination, intake and care

Read more

Summary

Introduction

With international concern over emerging infectious diseases (EID) and bioterrorist attacks, public health is being required to have early outbreak detection systems. The Automatic Syndromic Surveillance Planning Task Force Committee was created and recruited infection physicians, epidemiologists, biostatisticians, and information technology (IT) experts in July 2003 to oversee the initiation and development of Taiwan's first medical informatics-based emergency department syndromic surveillance system (ED-SSS) To prepare for this project, we reviewed the syndromic surveillance systems of other countries and officials of health informatics at Taiwan-CDC started collaborating with the Real-time Outbreak and Disease Surveillance (RODS) Laboratory at the University of Pittsburgh to develop a real-time syndromic surveillance system for Taiwan in August 2003 [1,4,5,6,7,8]. There, the task force members observed routine workflow processes and became familiar with other practical concerns of operating an ED-SSS on a daily basis Based on these experiences and high population density in Taiwan, we decided to create a nationwide surveillance system. To this nationwide ED-SSS, we added geographical information system (GIS) technology, meant to facilitate epidemiological investigation and feedback between data providers and decision-makers [13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call