Abstract

For the purpose of marine geoid modeling and many other geodetic and geophysical applications, a marine gravity map around Egypt is established by the integration of gravity data provided by satellite altimetry and shipborne gravimetric observations. Firstly, the collected shipborne data were compared with GO_CONS_GCF_2_TIM_R6 and XGM2019e GGMs and with SSv29.1 and DTU17 altimetry models. Then, a pre-refinement of ship marine surveys was done with a rigorous condition, in which a number of 6525 points have been removed from the dataset. After that, 87709 points were deducted from the pre-filtered shipborne dataset to fit the study area and the cross-validation approach with the kriging interpolation algorithm were applied. A rigorous level of confidence was decided in this step where the points which have differences between the estimated and the observed values more than twice the STD of the residuals were removed until the STD reached a value less than 1 mGal. Finally, the filtered shipborne gravity data were combined with DTU17 (the best evaluation model) using the least-squares collocation technique (LSC). The final gravity map was tested using 8000 randomly chosen shipborne stations, which were not included when applying LSC, revealing the significant enhancement gained after the integration process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.