Abstract
With the impact of climate change and the main rainfall seasons in Taiwan are concentrated in the plum rain season from May to June and the typhoon season from July to September each year.There are significant differences in rainfall and spatial and temporal distribution between the wet season and the dry season,the droughts will occur and even lead to severe water shortages, such as the worst drought in half a century in 2021.From a macroscopic spatial scale, for example, the El Niño phenomenon and solar activity may have a certain impact on the overall climate and water resources of the earth.Therefore, this study analyzes the correlation between rainfall and large-scale influencing factors such as sunspots, El Niño-Southern Oscillation,and uses machine learning models to predict and classify rainfall under different conditions,the prediction accuracy rate through historical data can reach 89.9% , with sunspots as the most significant factor. It is hoped that relevant units can provide reference for water resources management and planning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.