Abstract
Detailed understanding of interactions between amino acid residues is critical in using promising difference network analysis approaches to map allosteric communication pathways. Using experimental data as benchmarks, we scan values of two essential residue-residue contact parameters: the distance cutoff (dc) and the cutoff of residue separation in sequence (nc). The optimal dc = 4.5 Å is revealed, which defines the upper bound of the first shell of residue-residue packing in proteins, whereas nc is found to have little effects on performance. We also develop a new energy-based contact method for network analyses and find an equivalency between the energy network using the optimal energy cutoff ec = 1.0 kBT and the structure network using dc = 4.5 Å. The simple 4.5-Å contact method is further shown to have comparable prediction accuracy to a contact method using amino acid type-specific distance cutoffs and chemical shift prediction-based methods. This study provides necessary tools in mapping dynamics to functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Chemical Information and Modeling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.