Abstract

To accurately evaluate the dynamic elastic modulus (Ed) of wood in ancient timberwork buildings, the new materials of larch were used as the research object, and the stress wave nondestructive testing method was used to determine it. Based on nondestructive testing data, this paper proposed a method for predicting the Ed of larch using the principle of information diffusion. It selected the distance (D) from the bark to the pith in the cross-section of the wood and the height (H) from the base to the top in the radial section of the wood. The fuzzy diffusion relationships between the two evaluation indexes and the Ed were established using the information diffusion principle and the first- and second-order fuzzy approximate inferences in the fuzzy information optimization process. The calculation results showed that the dynamic elastic modulus model constructed by the information diffusion method can better predict the Ed of larch. The coefficient of determination between the measured value and the predicted value of the Ed was 0.861, they were in good agreement. The weights of the two influencing factors were 0.7 and 0.3, respectively, the average relative error of the fitted sample data was the minimum, which was 8.55%. This prediction model provided a strong basis for field inspection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.