Abstract

To understand methodological features of the detrended fluctuation analysis (DFA) using a higher-order polynomial fitting, we establish the direct connection between DFA and Fourier analysis. Based on an exact calculation of the single-frequency response of the DFA, the following facts are shown analytically: (1) in the analysis of stochastic processes exhibiting a power-law scaling of the power spectral density (PSD), S(f)∼f(-β), a higher-order detrending in the DFA has no adverse effect in the estimation of the DFA scaling exponent α, which satisfies the scaling relation α=(β+1)/2; (2) the upper limit of the scaling exponents detectable by the DFA depends on the order of polynomial fit used in the DFA, and is bounded by m+1, where m is the order of the polynomial fit; (3) the relation between the time scale in the DFA and the corresponding frequency in the PSD are distorted depending on both the order of the DFA and the frequency dependence of the PSD. We can improve the scale distortion by introducing the corrected time scale in the DFA corresponding to the inverse of the frequency scale in the PSD. In addition, our analytical approach makes it possible to characterize variants of the DFA using different types of detrending. As an application, properties of the detrending moving average algorithm are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call