Abstract
Measuring the Parathyroid hormone (PTH) levels assists in the investigation and management of patients with parathyroid disorders. Rapid PTH monitoring is a valid tool for accurate assessment intraoperatively. Rapid Electro-Analytical Device (READ) is a point-of-care device that uses impedance change between target and capture probe to assess the PTH concentration in undiluted patient plasma samples. The aim of this work focuses on evaluating the analytical performance of READ platform to Roche analyzer as a prospective clinical validation method. The coefficient of variation (CV) for intra-assay imprecision was < 5% and inter-assay imprecision CV was < 10% for high (942 pg/mL) and low (38.2 pg/mL) PTH concentration. Functional sensitivity defined at 15% CV was 1.9 pg/mL. Results obtained from READ platform correlated well (r = 0.99) with commercially available clinical laboratory method (Roche Diagnostics) to measure PTH concentrations with a turn-around time of less than 15 min. Furthermore, the mean bias of 7.6 pg/mL determined by Bland–Altman analysis, showed good agreement between the two methods. We envision such a sensing system would allow medical practitioners to facilitate targeted interventions, thereby, offering an immediate prognostic approach as the cornerstone to delivering successful treatment for patients suffering from primary hyperparathyroidism.
Highlights
Parathyroid Hormone (PTH) measurement is essential for the assessment and management of patients with parathyroid gland dysfunction with primary hyperparathyroidism (PHPT), being the third most common endocrine disorder[1]
PTH is a single chain 84 amino acids polypeptide produced by the parathyroid gland and in concert with vitamin D and other mediators is responsible for regulating body calcium h omeostasis[7,8]
Calibrated dose response was established for Rapid Electro-Analytical Device (READ) platform with varying PTH doses spiked in human plasma
Summary
Parathyroid Hormone (PTH) measurement is essential for the assessment and management of patients with parathyroid gland dysfunction with primary hyperparathyroidism (PHPT), being the third most common endocrine disorder[1]. Laboratory-based assays at best take up to 60 min to deliver results from the time sample is received in the central laboratory[10] During this time, the patient is kept in the operating room while the surgeon waits for results[11]. In patients with failed initial surgery, surgical selective thyroid venous catheterization is performed, and resection surgery is repeated several weeks later once laboratory PTH result is available. This highlights the need for a rapid and reliable technique to measure PTH which facilitates point of surgery testing (POST). Our aim is to allow surgeons along with their surgical staff to conduct dynamic PTH measurements during resection of the hyperfunctioning gland procedure without the need for a laboratory technician in a convenient and effective manner to facilitate improved patient outcome
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.