Abstract
AbstractThe main goal of this paper is to describe radical classes closed under essential extensions. It turns out that such classes are precisely the homomorphically closed semisimple classes, and hence a radical class is essentially closed if and only if it is subdirectly closed. Moreover, a class is closed under homomorphic images, direct sums and essential extensions if and only if it is an essentially closed radical class. Also radical classes are investigated which are closed under Dorroh essentially extensions only, such a radical class R consists of idempotent rings provided that R does not contain the ring of integers, meanwhile all the other radicals satisfy this requirement. A description of (hereditary and) Dorroh essentially closed radicals is given in Theorem 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.