Abstract

The fracture behavior of polymer nanocomposites (PNCs) based on a polypropylene with organo-modified clays (2 wt.%) and different coupling agents was studied by means of essential work of fracture (EWF). The PNC microstructure was characterized by clay particle dispersion at the micron scale (>1 μm) and sub-micron scale (200 nm to 1 μm), with good intercalation and partial exfoliation (<100 nm). Tensile testing showed significant improvements (+25–50%) corresponding to nanoparticle reinforcement effects. Fracture surfaces revealed that fracture occurred by void initiation at larger clay particles, followed by void growth and coalescence as the surrounding matrix stretched into ligaments. EWF improvements (+20%) were noted for PNCs that had fewer micron scale particles and showed higher tensile improvements. Toughness improvements were attributed to higher voiding stresses and improved matrix resistance attributed to finer, more oriented clay nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.