Abstract

Trace metals such as zinc, manganese, and iron are necessary for the growth and function of the brain. The transport of trace metals into the brain is strictly regulated by the brain barrier system, i.e., the blood-brain and blood-cerebrospinal fluid barriers. Trace metals usually serve the function of metalloproteins in neurons and glial cells, while a portion of trace metals exists in the presynaptic vesicles and may be released with neurotransmitters into the synaptic cleft. Zinc and manganese influence the concentration of neurotransmitters in the synaptic cleft, probably via the action against neurotransmitter receptors and transporters and ion channels. Zinc may be an inhibitory neuromodulator of glutamate release in the hippocampus, while neuromodulation by manganese might mean functional and toxic aspects in the synapse. Dietary zinc deficiency affects zinc homeostasis in the brain, followed by an enhanced susceptibility to the excitotoxicity of glutamate in the hippocampus. Transferrin may be involved in the physiological transport of iron and manganese into the brain and their utilization there. It is reported that the brain transferrin concentration is decreased in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease and that brain iron metabolism is also altered. The homeostasis of trace metals in the brain is important for brain function and also for the prevention of brain diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call