Abstract

Nitric oxide (NO) synthases (NOS) are thiolate-ligated heme-, tetrahydrobiopterin (BH(4))-, and flavin-containing monooxygenases which catalyze the NADPH-dependent conversion of L-arginine (L-Arg) to NO AND citrulline. NOS consists of two domains: an N-terminal oxygenase (heme- and BH(4)-bound) domain and a C-terminal reductase (FMN- and FAD-bound) domain. In this study, we have spectroscopically examined the binding of L-Agr and BH(4) to the dimeric, BH(4)-free ferric neuronal NOS (NNOS) oxygenase domain expressed in Escherichia coli separately from the reductase domain. Addition of L-Arg or its analogue inhibitors (N(G)()-methyl-L-Arg, N(G)()-nitro-L-Arg) and BH(4), together with dithiothreitol (DTT), to the pterin-free ferric low-spin oxygenase domain (gamma(MAX): 419, 538, 568 NM) and incubation for 2-3 days at 4 degrees C converted the domain to a native enzyme-type, predominantly high-spin state (gamma(MAX): approximately 395, approximately 512, approximately 650 NM). 7,8-Dihydrobiopterin and other thiols (E.G., beta-mercaptoethanol, cysteine, and glutathione, with less effectiveness) can replace BH(4) and DTT, respectively. the UV-visible absorption spectrum of L-Arg-bound ferric full length NNOS, which exhibits a relatively intense band at approximately 650 NM (epsilon equals 7.5-8 MM(-)(1) CM(-)(1)) due to the presence of a neutral flavin semiquinone, can then be quantitatively reconstructed by combining the spectra of equimolar amounts of the oxygenase and reductase domains. Of particular note, the heme spin-state conversion does not occur in the absence of a thiol even after prolonged (35-48 H) incubation of the oxygenase domain with BH(4) and/or L-Arg under anaerobic conditions. Thus, DTT (or other thiols) plays a significant role(s) beyond keeping BH(4) in its reduced form, In restoring the pterin- and/or substrate-binding capability of the E. coli-expressed, BH(4) free, dimeric NNOS oxygenase domain. Our results in combination with recently available X-ray crystallography and site-directed mutagenesis data suggest that the observed DTT effects arise from the involvement of an intersubunit disulfide bond or its rearrangement in the NOS dimer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call