Abstract

ABSTRACT We present a computational approach for identifying the important descriptors of the ionic conductivities of lithium solid electrolytes. Our approach discriminates the factors of both bulk and grain boundary conductivities, which have been rarely reported. The effects of the interrelated structural (e.g. grain size, phase), material (e.g. Li ratio), chemical (e.g. electronegativity, polarizability) and experimental (e.g. sintering temperature, synthesis method) properties on the bulk and grain boundary conductivities are investigated via machine learning. The data are trained using the bulk and grain boundary conductivities of Li solid conductors at room temperature. The important descriptors are elucidated by their feature importance and predictive performances, as determined by a nonlinear XGBoost algorithm: (i) the experimental descriptors of sintering conditions are significant for both bulk and grain boundary, (ii) the material descriptors of Li site occupancy and Li ratio are the prior descriptors for bulk, (iii) the density and unit cell volume are the prior structural descriptors while the polarizability and electronegativity are the prior chemical descriptors for grain boundary, (iv) the grain size provides physical insights such as the thermodynamic condition and should be considered for determining grain boundary conductance in solid polycrystalline ionic conductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.