Abstract

Oxidative stress and reactive oxygen species (ROS) can elicit and modulate various physiological and pathological processes, including cell death. However, the mechanisms controlling ROS-induced cell death are largely unknown. Data from this study suggest that receptor-interacting protein (RIP) and tumor necrosis factor receptor (TNFR)-associated factor 2 (TRAF2), two key effector molecules of TNF signaling, are essential for ROS-induced cell death. We found that RIP(-/-) or TRAF2(-/-) mouse embryonic fibroblasts (MEF) are resistant to ROS-induced cell death when compared to wild-type cells, and reconstitution of RIP and TRAF2 gene expression in their respective deficient MEF cells restored their sensitivity to H(2)O(2)-induced cell death. We also found that RIP and TRAF2 form a complex upon H(2)O(2) exposure, but without the participation of TNFR1. The colocalization of RIP with a membrane lipid raft marker revealed a possible role of lipid rafts in the transduction of cell death signal initiated by H(2)O(2). Finally, our results demonstrate that activation of c-Jun NH(2)-terminal kinase 1 is a critical event downstream of RIP and TRAF2 in mediating ROS-induced cell death. Therefore, our study uncovers a novel signaling pathway regulating oxidative stress-induced cell death.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.