Abstract
The precise molecular mechanism underlying arsenic trioxide (As(2)O(3))-induced apoptosis is a subject of extensive study. Here, we show that clinically relevant doses of As(2)O(3) can induce typical apoptosis in IM-9, a multiple myeloma cell line, in a Bcl-2 inhibitable manner. We confirmed that As(2)O(3) directly induced cytochrome c (cyto c) release from isolated mouse liver mitochondria via the mitochondrial permeability transition pore, and we further identified the voltage-dependent anion channel (VDAC) as a biological target of As(2)O(3) responsible for eliciting cyto c release in apoptosis. First, pretreatment of the isolated mitochondria with an anti-VDAC antibody specifically prevented As(2)O(3)-induced cyto c release. Second, in proteoliposome experiments, VDAC by itself was sufficient to mediate As(2)O(3)-induced cyto c release, which could be specifically inhibited by Bcl-X(L). Third, As(2)O(3) induced mitochondria membrane potential (DeltaPsim) reduction and cyto c release only in the VDAC-expressing, but not in the VDAC-deficient yeast strain. Finally, we found that As(2)O(3) induced the increased expression and homodimerization of VDAC in IM-9 cells, but not in Bcl-2 overexpressing cells, suggesting that VDAC homodimerization could potentially determine its gating capacity to cyto c, and Bcl-2 blockage of VDAC homodimerization represents a novel mechanism for its inhibition of apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.