Abstract

The sodA gene from Erwinia chrysanthemi strain 3937 was cloned by functional complementation of an Escherichia coli sodA sodB mutant and sequenced. We identified a 639-bp open reading frame, which encodes a protein that is 85% identical to the E. coli manganese-containing superoxide dismutase MnSOD. Promoter elements of this gene were identified by transcriptional mapping experiments. We constructed an E. chrysanthemi deltasodA mutant by reverse genetics. The deltasodA mutation resulted in the absence of a cytoplasmic SOD, which displays the same characteristics as those of MnSOD. The deltasodA mutant was more sensitive to paraquat than the wild-type strain. This mutant could macerate potato tubers, similar to the wild-type strain. In contrast, when inoculated on African violets, the mutant produced, at most, only small necrotic lesions. If the inoculum was supplemented with the superoxide anion-scavenging metalloporphyrin MnTMPyP or purified SOD and catalase, the deltasodA mutant was able to macerate the inoculated zone. Generation of superoxide anion by African violet leaves inoculated with E. chrysanthemi was demonstrated with nitroblue tetrazolium as an indicator. Therefore, at the onset of infection, E. chrysanthemi cells encounter an oxidative environment and require active protective systems against oxidative damages such as MnSOD to overcome these types of conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.