Abstract

Many bees possess a tongue resembling a brush composed of a central rod (glossa) covered by elongated papillae, which is dipped periodically into nectar to collect this primary source of energy. In vivo measurements show that the amount of nectar collected per lap remains essentially constant for sugar concentrations lower than 50% but drops significantly for a concentration around 70%. To understand this variation of the ingestion rate with the sugar content of nectar, we investigate the dynamics of fluid capture by Bombus terrestris as a model system. During the dipping process, the papillae, which initially adhere to the glossa, unfold when immersed in the nectar. Combining in vivo investigations, macroscopic experiments with flexible rods, and an elastoviscous theoretical model, we show that the capture mechanism is governed by the relaxation dynamics of the bent papillae, driven by their elastic recoil slowed down through viscous dissipation. At low sugar concentrations, the papillae completely open before the tongue retracts out of nectar and thus, fully contribute to the fluid capture. In contrast, at larger concentrations corresponding to the drop of the ingestion rate, the viscous dissipation strongly hinders the papillae opening, reducing considerably the amount of nectar captured. This study shows the crucial role of flexible papillae, whose aspect ratio determines the optimal nectar concentration, to understand quantitatively the capture of nectar by bees and how physics can shed some light on the degree of adaptation of a specific morphological trait.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.