Abstract
In recent years, significant progress has been made in understanding cardiomyocyte differentiation. However, little is known about the regulation of myocyte survival despite the fact that myocyte apoptosis is a leading cause of heart failure. Here we report that transcription factor GATA-4 is a survival factor for differentiated, postnatal cardiomyocytes and an upstream activator of the antiapoptotic gene Bcl-X. An early event in the cardiotoxic effect of the antitumor drug doxorubicin is GATA-4 depletion, which in turn causes cardiomyocyte apoptosis. Mouse heterozygotes for a null Gata4 allele have enhanced susceptibility to doxorubicin cardiotoxicity. Genetic or pharmacologic enhancement of GATA-4 prevents cardiomyocyte apoptosis and drug-induced cardiotoxicity. The results indicate that GATA-4 is an antiapoptotic factor required for the adaptive stress response of the adult heart. Modulation of survival/apoptosis genes by tissue-specific transcription factors may be a general paradigm that can be exploited effectively for cell-specific regulation of apoptosis in disease states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.