Abstract

Yeast phosphatidylinositol transfer protein (Sec14p) is required for the production of secretory vesicles from the Golgi. This requirement can be relieved by inactivation of the cytosine 5'-diphosphate (CDP)-choline pathway for phosphatidylcholine biosynthesis, indicating that Sec14p is an essential component of a regulatory pathway linking phospholipid metabolism with vesicle trafficking (the Sec14p pathway). Sac1p (refs 7 and 8) is an integral membrane protein related to inositol-5-phosphatases such as synaptojanin, a protein found in rat brain. Here we show that defects in Sac1p also relieve the requirement for Sec14p by altering phospholipid metabolism so as to expand the pool of diacylglycerol (DAG) in the Golgi. Moreover, although short-chain DAG improves secretory function in strains with a temperature-sensitive Sec14p, expression of diacylglycerol kinase from Escherichia coli further impairs it. The essential function of Sec14p may therefore be to maintain a sufficient pool of DAG in the Golgi to support the production of secretory vesicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.