Abstract

Morphogenetic cell movements during gastrulation shape the vertebrate embryo bodyplan. Non-canonical Wnt signaling has been established to regulate convergence and extension cell movements that mediate anterior-posterior axis elongation. In recent years, many other factors have been implicated in the process by modulation of non-canonical Wnt signaling or by different, unknown mechanisms. We have found that the Src family kinases, Fyn and Yes, are required for normal convergence and extension cell movements in zebrafish embryonic development and they signal in parallel to non-canonical Wnts, eventually converging on a common downstream factor, RhoA. Here, we report that Csk, a negative regulator of Src family kinases has a role in gastrulation cell movements as well. Csk knock down induced a phenotype that was similar to the defects observed after knock down of Fyn and Yes, in that gastrulation cell movements were impaired, without affecting cell fate. The Csk knock down phenotype was rescued by simultaneous partial knock down of Fyn and Yes. We conclude that Csk acts upstream of Fyn and Yes to control vertebrate gastrulation cell movements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.