Abstract

LukF and Hlg2 of staphylococcal gamma-hemolysin assemble into hetero-oligomeric pores on human red blood cells (HRBC). Here, we demonstrate, using a single-molecule imaging technique, that a W177T/R198T mutant of LukF, which exhibits no binding activity toward phosphatidylcholine, could form intermediate oligomers with Hlg2, including dimers, tetramers, and hexamer/heptamers, on HRBC. But, the mutant neither caused K(+) efflux nor lysed HRBC, indicating that functional pores were not formed. Hence, we conclude that the W177 and R198 residues are essential for proper pore-formation by staphylococcal gamma-hemolysin. We also suggest that the interaction between the W177 and R198 residues, and phosphatidylcholine on membranes is the key to the formation of functional pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.