Abstract
The sympathetic nervous system consists of efferent neurones supplying the viscera. The cell bodies of preganglionic neurones are located in four areas in the thoracolumbar cord; however, the majority are found in the IML. Various tracing techniques have provided information concerning the location of the cell bodies of sympathetic preganglionic neurones projecting into various nerves and ganglia and regulating the adrenal gland, the kidney and the sympathetic supply to skeletal muscle. Numerous supraspinal neurones project to the neuropil surrounding sympathetic preganglionic neurones and may form synaptic contacts with these neurones. The areas of the brain that project to the IML appear to be part of a network of reciprocally connected supraspinal cell groups. Although much emphasis has been placed on the importance of the RVLM in the mediation of tonic and phasic inputs to sympathetic preganglionic neurones, it appears that other areas are of significant import; the RVLM should not be considered to be 'the vasomotor centre'. Spinal and cranial afferents influence the sympathetic nervous system. Baroreceptor afferents terminate in the NTS and may utilize an excitatory amino acid as their neurotransmitter. However, a number of neuropeptides are also associated with these afferents. Neurones within the NTS project to a number of brain stem areas thought to be involved in the regulation of sympathetic activity; consequently the baroreceptor reflex may be mediated over a number of parallel pathways involving both supraspinal and spinal sites of inhibition. Many neurotransmitters are thought to regulate the activity of sympathetic preganglionic neurons: monoamines, peptides and amino acids. Matching the chemical content of the cell bodies of neurones within a particular cell group with physiological characteristics is a challenging task; some barosensitive neurones of the RVLM do not appear to be adrenergic although they are in the midst of the C1 adrenergic cell group. Besides acetylcholine and noradrenaline, neurotransmission in the periphery appears to involve numerous peptides and ATP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.