Abstract

Chlorhexidine (CHX), one of the most effective drugs administered for periodontal treatment, presents collateral effects including toxicity when used for prolonged periods; here, we have evaluated the bactericidal potency and the cytocompatibility of Juniperus excelsa M. Bieb essential oil (EO) in comparison with 0.05% CHX. The EO was extracted from berries by hydrodistillation and components identified by gas chromatography and mass spectrometry. Bacterial inhibition halo analysis, quantitative cell viability 2,3-bis(2-methoxy-4-nitro-5-sulphophenyl)-5-[(phenyl amino) carbonyl]-2H-tetrazolium hydroxide assay (XTT), and colony forming unit (CFU) count were evaluated against the two biofilm formers Aggregatibacter actinomycetemcomitans and Streptococcus mutans. Finally, cytocompatibility was assessed with human primary gingival fibroblasts (HGF) and mucosal keratinocytes (HK). The resulting EO was mainly composed of monoterpene hydrocarbons and oxygenated monoterpenes. An inhibition halo test demonstrated that both bacteria were sensitive to the EO; XTT analysis and CFU counts confirmed that 10-fold-diluted EO determined a statistically significant (p < 0.05) reduction in bacteria count and viability towards both biofilm and planktonic forms in a comparable manner to those obtained with CHX. Moreover, EO displayed higher cytocompatibility than CHX (p < 0.05). In conclusion, EO exhibited bactericidal activity similar to CHX, but a superior cytocompatibility, making it a promising antiseptic alternative to CHX.

Highlights

  • A number of biological niches are integrated into the human body, each of which is colonized by commensal organisms that, numerically speaking, overwhelm the eukaryotic cells, and that protect the organism from infection by pathogenic species

  • The yield of the essential oil (EO) extracted from the berries of J. excelsa was 1.17%

  • The present study focused on the cytocompatibility of EOs with human primary gingival fibroblasts (HGF) and HKs; these cells represent the best in vitro cellular model, since they come from the same species and the same anatomical site where the compounds will be used in vivo

Read more

Summary

Introduction

A number of biological niches are integrated into the human body, each of which is colonized by commensal organisms that, numerically speaking, overwhelm the eukaryotic cells, and that protect the organism from infection by pathogenic species. Supragingival plaque is mainly composed of Gram-positive bacteria, comprising Streptococcus sanguinis, S. mutans, S. mitis, S. salivarius, and lactobacilli, whereas the subgingival plaque primarily includes Gram-negative anaerobic bacteria, such as Aggregatibacter actinomycetemcomitans, Tannerella forsythia, Campylobacter spp., Capnocytophaga spp., Eikenella corrodens, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and oral spirochetes such as Treponema denticola. In both the supragingival and the subgingival areas, the microbial communities on teeth and gingival tissues can accumulate high concentrations of bacterial metabolites in their microenvironment (e.g., fatty acid end-products, ammonia, hydrogen peroxide, oxidants and carbon dioxide), further influencing the growth of other bacterial species. In the presence of sugars, S. mutans overwhelms the non-acid producers Streptococcus spp., which compose the supragingival biofilm

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.