Abstract

Essential oil based insect repellents are environment friendly and provide dependable personal protection against the bites of mosquitoes and other blood-sucking insects. In the present study, optimized mixture of three essential oils was embedded into the ethylcellulose (EC) and polyvinylpyrrolidone (PVP K-30) polymers to develop essential oils based patch type mosquito repellent formulation. The developed formulation was characterized for various physico-chemical properties, oil release efficiency and essential oil–polymer interaction. Repellent activity of the formulation was evaluated against Ae. (S) albopictus mosquitoes and compared with commercially available synthetic insecticide based mosquito repellent cream Odomos® in the laboratory. The developed patches were 100% flat and there was no interaction between oil components and the excipients. Patches were smooth, homogenous and provided excellent mosquito repellent activity comparable to Odomos® under laboratory condition. Morphological and physico-chemical characterization indicated that the formulation was stable and suitable with the polymeric combination. The patch formulation did not show any inhalation toxicity in experimental Wistar rat. The repellent patches developed and evaluated currently, may provide a suitable, eco-friendly, acceptable and safe alternative to the existing synthetic repellent formulations for achieving protection against mosquitoes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.