Abstract

Genetic robustness is a hallmark of cells, occurring through many mechanisms and at many levels. Essential genes lack the common robustness mechanism of genetic redundancy (i.e., existing alongside other genes with the same function), and thus appear at first glance to leave cells highly vulnerable to genetic or environmental perturbations. Here we explore a hypothesis that cells might protect against essential gene loss through mechanisms that occur at various cellular levels aside from the level of the gene. Using Escherichia coli and Saccharomyces cerevisiae as models, we find that essential genes are enriched over non-essential genes for properties we call “coding efficiency” and “coding robustness”, denoting respectively a gene’s efficiency of translation and robustness to non-synonymous mutations. The coding efficiency levels of essential genes are highly positively correlated with their evolutionary conservation levels, suggesting that this feature plays a key role in protecting conserved, evolutionarily important genes. We then extend our hypothesis into the realm of metabolic networks, showing that essential metabolic reactions are encoded by more “robust” genes than non-essential reactions, and that essential metabolites are produced by more reactions than non-essential metabolites. Taken together, these results testify that robustness at the gene-loss level and at the mutation level (and more generally, at two cellular levels that are usually treated separately) are not decoupled, but rather, that cellular vulnerability exposed due to complete gene loss is compensated by increased mutational robustness. Why some genes are backed up primarily against loss and others against mutations still remains an open question.

Highlights

  • Robustness is a defining hallmark of all evolved, stable living systems, including single celled organisms

  • Considering the striking robustness of these organisms, we hypothesize that robustness mechanisms have formed to protect against the loss of essential genes, which lack the key property of redundancy

  • That multiple levels of compensation exist in the cell, which uphold the general observation of cellular robustness as it relates to essential genes, and sheds light on how essential genes can persist across the tree of life without devastating consequences

Read more

Summary

Introduction

Robustness is a defining hallmark of all evolved, stable living systems, including single celled organisms. Throughout evolution, different robustness features have evolved within many cellular circuits (e.g., in genetic, protein, and metabolic flux networks). These features operate through a variety of mechanisms [1] to protect cell functions. The perturbations that robustness protects against can occur either externally in the environment, or internally.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.