Abstract

Head and neck squamous cell carcinoma (HNSCC) has been widely reported and considered as one of the most threatening diseases to human health. Derived from complicated tissue subtypes, HNSCC has diverse symptoms and pathogenesis. They make the identification of the core carcinogenic factors of such diseases at the multi-cell level difficult. With the development of single-cell sequencing technologies, the effects of non-malignant cells on traditional bulk sequencing data can be eliminated directly. On the basis of fresh single-cell RNA-seq data, we set up a computational filtering strategy for tumor cell identification in an expression rule manner. This strategy can reveal the accurate expression distinction between tumor cells and adjacent tumor microenvironment, which are all supported by literature reports. Validated by several independent datasets, these rule genes can further group HNSCC patients with significant difference on survival risks. Thus, the establishment of our computational approach may not only provide an efficient tool to identify malignant cells in the tumor ecosystem but also deepen our understanding of tumor heterogeneity and tumorigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.