Abstract

A series of ferromagnetic-insulator granular films were prepared at room temperature with a spc350 multi-target magnetron controlled sputtering system and all of the tunneling giant magnetoresistences were measured with the conventional four probes method. Experimental results revealed that TMR depends strongly on the magnetic granule, matrix and the size distribution of magnetic granules. Accordingly, a modified phenomenological theory is presented to investigate comprehensively the effect of the magnetic granule, matrix and the size distribution of magnetic granules on the TMR. In this theory, the size distribution of granules was described by the log-normal function and all granules can be divided into three categories which have different contributions on TMR by two critical sizes: D1(T) as the critical size distinguishing superparamagnetic granules from single domain ferromagnetic granules and D2(T) as the critical size distinguishing the single domain from the multi-domain. The calculated results, including TMR versus applied magnetic field, measured temperature, granule size or volume fraction, are in agreement with the experiments when the single domain ferromagnetic granules play a key role in TMR for granular films, which indicates that our modified model is reasonable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call