Abstract

Tactical planning models for liner shipping problems such as network design and fleet deployment usually minimize the total cost or maximize the total profit subject to constraints including ship availability, service frequency, ship capacity, and transshipment. Most models in the literature do not consider slot-purchasing, multi-type containers, empty container repositioning, or ship repositioning, and they formulate the numbers of containers to transport as continuous variables. This paper develops a mixed-integer linear programming model that captures all these elements. It further examines from the theoretical point of view the additional computational burden introduced by incorporating these elements in the planning model. Extensive numerical experiments are conducted to evaluate the effects of the elements on tactical planning decisions. Results demonstrate that slot-purchasing and empty container repositioning have the largest impact on tactical planning decisions and relaxing the numbers of containers as continuous variables has little impact on the decisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.