Abstract

We study the essential dimension of representations of a fixed quiver with given dimension vector. We also consider the question of when the genericity property holds, i.e., when essential dimension and generic essential dimension agree. We classify the quivers satisfying the genericity property for every dimension vector and show that for every wild quiver the genericity property holds for infinitely many of its Schur roots. We also construct a large class of examples, where the genericity property fails. Our results are particularly detailed in the case of Kronecker quivers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.