Abstract
This paper presents an in-depth understanding of the essential differences of organic small-molecule thin films at the molecular level via vacuum deposition and solution processes for organic light-emitting diodes (OLEDs). Synchrotron-based two-dimensional grazing incidence X-ray diffraction has been used to investigate the essential difference. The result reveals that tris(4-carbazoyl-9-ylphenyl)amine (TCTA) molecules show highly oriented arrangements, that is, face-to-face π–π stacking, in vacuum-deposited films, unlike the randomly arranged molecules in spin-coated films. The face-to-face π–π stacking behavior of the molecules in a vacuum-deposited TCTA film leads to higher hole-transport mobility, which is the essential reason for the higher efficiency of a vacuum-deposited OLED compared with that of a solution-processed counterpart, consistent with the calculation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.