Abstract
Insects are unable to synthesize essential amino acids (EAAs) de novo, thus rely on dietary or symbiotic sources for them. Wood is a poor resource of nitrogen in general, and EAAs in particular. In this study, we investigated whether gut microbiota of the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), a cerambycid that feeds in the heartwood of healthy host trees, serve as sources of EAAs to their host under different dietary conditions. δ(13)C-stable isotope analyses revealed significant δ(13)C-enrichment (3.4 ± 0.1‰; mean ± SEM) across five EAAs in wood-fed larvae relative to their woody diet. δ(13)C values for the consumers greater than 1‰ indicate significant contributions from non-dietary EAA sources (symbionts in this case). In contrast, δ(13)C-enrichment of artificial diet-fed larvae (controls) relative to their food source was markedly less (1.7 ± 0.1‰) than was observed in wood-fed larvae, yet still exceeded the threshold of 1‰. A predictive model based on δ(13)CEAA signatures of five EAAs from representative bacterial, fungal, and plant samples identified symbiotic bacteria and fungi as the likely supplementary sources of EAA in wood-fed larvae. Using the same model, but with an artificial diet as the dietary source, we identified minor supplementary bacterial sources of EAA in artificial diet-fed larvae. This study highlights how microbes associated with A. glabripennis can serve as a source of EAAs when fed on nutrient-limited diets, potentially circumventing the dietary limitations of feeding on woody substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.