Abstract

BackgroundThe protection of the diabetic kidney by Empagliflozin (EMPA) is attributed to its interaction with the sodium glucose cotransporter 2 located on proximal tubular epithelial cells (PTECs). Estrogen-related receptor α (ESRRA), known for its high expression in PTECs and association with mitochondrial biogenesis, plays a crucial role in this process. This study aimed to explore the impact of ESRRA on mitochondrial mass in diabetic tubular injury and elucidate the mechanism underlying the protective effects of EMPA. MethodsMitochondrial changes in PTECs of 16-week-old diabetic mice were assessed using transmission electron microscopy (TEM) and RNA-sequences. In vivo, EMPA administration was carried out in db/db mice for 8 weeks, while in vitro experiments involved modifying ESRRA expression in HK2 cells using pcDNA-ESRRA or EMPA. ResultsEvaluation through TEM revealed reduced mitochondrial mass and swollen mitochondria in PTECs, whereas no significant changes were observed under light microscopy. Analysis of RNA-sequences identified 110 downregulated genes, including Esrra, associated with mitochondrial function. Notably, ESRRA overexpression rescued the loss of mitochondrial mass induced by high glucose (HG) in HK2 cells. EMPA treatment ameliorated the ultrastructural alterations and mitigated the downregulation of ESRRA both in db/db mice and HG-treated HK2 cells. ConclusionThe diminished expression of ESRRA is implicated in the decline of mitochondrial mass in PTECs during the early stages of diabetes, highlighting it as a key target of EMPA for preventing the progression of diabetic kidney injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.