Abstract

Epithelial splicing regulatory protein 1 (ESRP1) is an RNA-binding protein that regulates alternative splicing of mRNA. ESRP1 plays an important role in chemoresistance of various cancers, including breast cancer, colon cancer and non-small cell lung cancer. However, the role of ESRP1 and its mechanism in small cell lung cancer (SCLC) chemoresistance remains unclear. In this study, we found that ESRP1 is significantly downregulated in SCLC chemo-resistant cells compared with chemo-sensitive cells. Moreover, the expression of ESRP1 was significantly lower in SCLC tissues than that in normal adjacent tissues and positively correlated with overall survival. Overexpression of ESRP1 increased SCLC chemosensitivity, and induced cell apoptosis and cell cycle arrest, whereas knockdown of ESRP1 induced the opposite effects. ESRP1 could inhibit the growth of SCLC in vivo. Through mRNA transcriptome sequencing, we found that ESRP1 regulates coactivator-associated arginine methyltransferase 1 (CARM1) to produce two different transcripts CARM1FL and CARM1ΔE15 by alternative splicing. ESRP1 affects the chemoresistance of SCLC by changing the content of different transcripts of CARM1. Furthermore, CARM1 regulates arginine methylation of Smad7, activates the TGF-β/Smad pathway and induces epithelial-to-mesenchymal transition (EMT), thereby promoting SCLC chemoresistance. Collectively, our study firstly demonstrates that ESRP1 inhibits the TGF-β/Smad signaling pathway by regulating alternative splicing of CARM1, thereby reversing chemoresistance of SCLC. The splicing factor ESRP1 may serve as a new drug resistance marker molecule and a potential therapeutic target in SCLC patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.