Abstract

In this report, Fe 3+ impurity ions present in green sapphire ( Al 2 O 3) were studied experimentally, by heating a light green sapphire in flowing oxygen atmosphere for 12 h from 1200, 1300, 1400, 1500 and 1600°C, respectively. Electron spin resonance (ESR) spectra in X-band (~9.45 GHz ) were recorded by mounting the crystal with the c-axis perpendicular (θ = 90°) to the magnetic field direction. The spectra were recorded and simulated by a numerical diagonalization of spin Hamiltonian matrix in the range from 0 to 180 degrees for every 15 degrees of rotation angle (φ). In our case, only the last two sets of peaks strongly depend on the rotation angle (φ), and each exhibits C 3 symmetry due to two magnetically inequivalent Fe 3+ sites in the corundum structure. For polycrystalline ESR spectra, seven main Fe 3+ ESR absorption peaks occur at the resonance magnetic fields of 100.20, 310.24, 486.80, 525.00, 550.60, 761.00 and 777.00 mT respectively. Specifically, ESR signals show that the number of paramagnetic Fe 3+ ions increase roughly linearly with the heat treating temperature, having the [Formula: see text] ratio ~1.41 at 1600°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.