Abstract

Reactions of OH radicals with methyl and ethyl derivatives of uracil, cytosine and thymine in aqueous solutions have been investigated. Photolysis of H2O2 was used to generate OH radicals and the radicals on the base derivatives were spin-trapped using t-nitrosobutane and identified with the help of e.s.r. spectroscopy. Addition of OH radicals was found to take place predominantly to the C(5)--C(6) double bond of the bases. H-abstraction from the methyl group occurred in the N(1) methyl derivatives of uracil, cytosine and thymine. Radicals formed by H-abstraction from the methyl group were also detected for 3-methyluracil, thymine, 1-methylthymine and 1-ethylthymine. Introduction of a methyl or ethyl group at the N(1) position of uracil, cytosine and thymine causes an increase in the C(6) proton coupling and a decrease in the N(1) splitting for radicals formed by OH addition at the C(5) position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call