Abstract
The spin dynamics of copper pyrazine dinitrate (Cu(C4H4N2)(NO3)2), a model spin-1/2 Heisenberg antiferromagnetic (AF) chain system, was investigated by means of electron spin resonance (ESR). Using the high-field ESR we evidenced the inequivalence of Cu sites belonging to adjacent spin chains in the ac planes of this compound. It was revealed that the dominating interchain interaction is of zig-zag-type. This interaction gives rise to geometrical frustration strongly affecting the character of AF ordering. Combining our experimental findings with the results of a quasiclassical approach we predict that at low temperatures the system orders in an incommensurate spiral state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.