Abstract

We have analyzed the Nojima fault NIED 1800 m drill core samples by ESR (Electron Spin Resonance) to detect seismic frictional heating events, especially during the 1995 Kobe Earthquake. Dark gray fault gouge with foliation > 10 cm away from the fault plane at about 1140 m in depth, which was produced by ancient fault movements, has a FMR (ferrimagnetic resonance) signal. Heating experiments show that this FMR signal is derived from ferrimagnetic trivalent ion oxides (γ-Fe 2O 3: maghemite) with imperfect crystallinity, which is produced by thermal dehydration of γ-FeOOH (lepidocrocite) or Fe(OH) 3 (limonite). The existence of the FMR signal means that dry heating such as frictional heating once occurred, and that the frictional heat temperature along the dark gray fault gouge may have risen to over 350 °C during ancient seismic fault slip. In order to detect frictional heating events in fault zones, the increase of the FMR signal and the color change of fault gouge into dark gray or black are important indexes. On the other hand, no FMR signal is detected from the fault gouges just on two fault planes at about 1140 m and 1300 m in depth, which are considered to be possible main fault planes in the 1995 Kobe Earthquake. These two fault planes may not have played an important role of fault slip in the Earthquake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call