Abstract
Single cell segmentation is critical in the processing of spatial omics data to accurately perform cell type identification and analyze spatial expression patterns. Segmentation methods often rely on semi-supervised annotation or labeled training data which are highly dependent on user expertise. To ensure the quality of segmentation, current evaluation strategies quantify accuracy by assessing cellular masks or through iterative inspection by pathologists. While these strategies each address either the statistical or biological aspects of segmentation, there lacks a unified approach to evaluating segmentation accuracy. In this article, we present ESQmodel, a Bayesian probabilistic method to evaluate single cell segmentation using expression data. By using the extracted cellular data from segmentation and a prior belief of cellular composition as input, ESQmodel computes per cell entropy to assess segmentation quality by how consistent cellular expression profiles match with cell type expectations. Source code is available on Github at: https://github.com/Roth-Lab/ESQmodel.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.