Abstract

SummaryThe coexistence of a macrocell and a number of femtocells often leads to a two‐tier heterogeneous network, where the co‐tier interference (CotIN) and cross‐tier interference (CrotIN) both degrade users' quality of service. In order to suppress these interferences, we propose a precoding scheme in a heterogeneous network with cooperative femtocells, called CotIN elimination and CrotIN suppression with precoding criterion selection (ESPS) scheme. In this scheme, we first eliminate the CotINs of each user by applying the QR decomposition to channel matrix. Then the CrotINs of macrocell users and femtocell users are suppressed via the macrocell base station (MBS) and femtocell access points (FAPs) with precoding criterion selection, respectively. By using the ESPS scheme, spatial resources can be efficiently exploited. In addition, our ESPS scheme requires little information exchange between MBS and FAPs without iteration and thus significantly reduces the implementation complexity. Furthermore, the robustness is increased through introducing the information of channel uncertainty into the ESPS when channel estimation or quantization error exists. The performance analysis for the ESPS demonstrates that the ESPS is practical in the heterogeneous networks. Finally, simulation results show that the ESPS can decrease users' bit error rates and increase their transmission rates. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.