Abstract

Attaching/Effacing (A/E) bacteria include human pathogens enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and their murine equivalent Citrobacter rodentium (CR), of which EPEC and EHEC are important causative agents of foodborne diseases worldwide. While A/E pathogen infections cause mild symptoms in the immunocompetent hosts, an increasing number of studies show that they produce more severe morbidity and mortality in immunocompromised and/or immunodeficient hosts. However, the pathogenic mechanisms and crucial host-pathogen interactions during A/E pathogen infections under immunocompromised conditions remain elusive. We performed a functional screening by infecting interleukin-22 (IL-22) knockout (Il22-/-) mice with a library of randomly mutated CR strains. Our screen reveals that interruption of the espF gene, which encodes the Type III Secretion System effector EspF (E. coli secreted protein F) conserved among A/E pathogens, completely abolishes the high mortality rates in CR-infected Il22-/- mice. Chromosomal deletion of espF in CR recapitulates the avirulent phenotype without impacting colonization and proliferation of CR, and EspF complement in ΔespF strain fully restores the virulence in mice. Moreover, the expression levels of the espF gene are elevated during CR infection and CR induces disruption of the tight junction (TJ) strands in colonic epithelium in an EspF-dependent manner. Distinct from EspF, chromosomal deletion of other known TJ-damaging effector genes espG and map failed to impede CR virulence in Il22-/- mice. Hence our findings unveil a critical pathophysiological function for EspF during CR infection in the immunocompromised host and provide new insights into the complex pathogenic mechanisms of A/E pathogens.

Highlights

  • Utilizing an immunodeficient mouse model for a functional screening, we have identified E. coli secreted protein F (EspF) as a critical virulence protein that plays a pivotal role in A/E pathogen Citrobacter rodentium (CR) infectioninduced severe morbidity and mortality in immunocompromised animals

  • We have revealed that the EspF-dependent disruption of tight junctions is crucial for the loss of colonic epithelial barrier function and the systemic spread of pathogens during infection

  • The human pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are the leading causative agents for foodborne diseases, which lead to severe economic burden, morbidity, and mortality worldwide [1,2,3,4]

Read more

Summary

Introduction

The human pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are the leading causative agents for foodborne diseases, which lead to severe economic burden, morbidity, and mortality worldwide [1,2,3,4]. EHEC, EPEC and their murine equivalent Citrobacter rodentium (CR) cause attaching and effacing (A/E) lesions, characterized by the attachment of the bacteria to host epithelial cells and the localized destruction of brush-border microvilli [5,6]. CR shares 66.7% of its genes and most pathogenic mechanisms with EPEC and EHEC [5,7,8,9,10,11]. Since human pathogens EPEC and EHEC do not infect mice well [3], CR infection in mice has been widely used as an animal model to study the pathogenic mechanisms of A/E pathogens. It is believed that a substantial amount of essential host-pathogen interactions during A/E pathogen infections in vivo remain poorly understood

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.