Abstract
Dendrograms are widely used to represent graphically the clusters and partitions obtained with hierarchical clustering schemes. Espaliers are generalized dendrograms in which the length of horizontal lines is used in addition to their level in order to display the values of two characteristics of each cluster (e.g., the split and the diameter) instead of only one. An algorithm is first presented to transform a dendrogram into an espalier without rotation of any part of the former. This is done by stretching some of the horizontal lines to obtain a diagram with vertical and horizontal lines only, the cutting off by diagonal lines the parts of the horizontal lines exceeding their prescribed length. The problem of finding if, allowing rotations, no diagonal lines are needed is solved by anO(N2) algorithm whereN is the number of entities to be classified. This algorithm is the generalized to obtain espaliers with minimum width and, possibly, some diagonal lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.