Abstract

Ineffective esophageal motility (IEM) is the most common motility disorder. However, little is known about its pathophysiology. Vagal afferent nerves convey esophageal intraluminal bolus information to solitary nucleus, which is likely to be involved with esophageal primary and secondary peristalsis (SP). We hypothesized that altered mucosal sensory afferents underlie the pathogenesis of IEM. We prospectively collected esophageal biopsies from 38 patients with proton pump inhibitor-refractory reflux symptoms from January to December 2019. All patients underwent high-resolution manometry for the evaluation of primary and secondary peristalsis, and off-PPI 24-h impedance-pH studies. Biopsies were analyzed using immunohistochemistry for identification of calcitonin gene-related peptide-immunoreactive (CGRP-IR) nerves and qPCR for mRNA expression of potential mechanoreceptors. Overall 32 patients were finally analyzed which consisted of 11 patients with normal motility and 21 patients with IEM. The position of mucosal CGRP-IR nerves from the esophageal lumen did not differ between the two groups (the proximal esophagus (p=0.52), the mid-esophagus (p=0.92), the distal esophagus (p=0.29)) with the similar reflux profile. No difference was seen in the position of CGRP-IR nerves between patients with successful triggering of SP and those unable to trigger SP. There was also no difference in mRNA expression of each potential mechanoreceptors (TRPA1, TRPV1, TRPV4, ASIC1, ASIC3) between the two groups. Our study showed that mucosal sensory afferents nerve position and mRNA expression of potential mechanoreceptors did not correlate to weak esophageal contraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call