Abstract

Objective Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) has a reported incidence of 1 in 3500 live births and requires intensive care and surgery. To evaluate the prevalence of a molecularly confirmed genetic etiology ofEA/TEFin a level IV neonatal intensive care unit (NICU), focusing on genetic evaluation, diagnostic yield, and clinical outcomes of these neonates. Study design A retrospective cohort study over a period of seven years was performed for all patients admitted with a diagnosis of EA/TEF. Automated data was extracted for demographic information and manual extraction was done to evaluate the frequency of associated anomalies, type of genetic evaluations and diagnoses, and outcomes at NICU discharge. Results Sixty-eight infants met the inclusion criteria. The majority were male (n=42; 62%), born at >37 weeks'gestation (n=36; 53%), and had EA with distal TEF (n=54; 79%). Most (n=53; 78%) had additional associated congenital anomalies, but only 47 (69%) patients had a genetics evaluation performed and genetic testing was sent for 44 (65%) of those patients. The most common genetic testing performed was chromosomal microarray analysis (n=40; 59%), followed by chromosome analysis (n=11; 16%), and whole exome/genome sequencing (n=7; 10%). Five unique genetic diagnoses including CHARGE Syndrome, Fanconi Syndrome, EFTUD2-related mandibulofacial dysostosis, and two different chromosomal deletion syndromes were made for a total of nine (13%) patients in our cohort. The cohort suffered a high rate of morbidity and mortality during their NICU stay with important differences noted in isolated vs non-isolated EA/TEF. Twelve infants (18%) died prior to NICU discharge. Of those surviving, 40 (71%) infants had a primary repair, 37 (66%) infants required G or GJ feedings at NICU discharge, and eight (14%) patients were discharged on some type of respiratory support. Conclusion In this high-risk cohort of EA/TEF patients cared for at a quaternary NICU, a majority were non-isolated and had some form of a genetic evaluation, but a minority underwent exome or genome sequencing. Given the high prevalence of associated anomalies, high mortality, and genetic disease prevalence in this cohort, we recommend standardization of phenotyping and genetic evaluation to allow for precision care and appropriate risk stratification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call