Abstract

This article presents a mechanism of action hypothesis to explain the rapid antidepressant effects of esmethadone (REL-1017) and other uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists and presents a corresponding mechanism of disease hypothesis for major depressive disorder (MDD). Esmethadone and other uncompetitive NMDAR antagonists may restore physiological neural plasticity in animal models of depressive-like behavior and in patients with MDD via preferential tonic block of pathologically hyperactive GluN2D subtypes. Tonic Ca2+ currents via GluN2D subtypes regulate the homeostatic availability of synaptic proteins. MDD and depressive behaviors may be determined by reduced homeostatic availability of synaptic proteins, due to upregulated tonic Ca2+ currents through GluN2D subtypes. The preferential activity of low-potency NMDAR antagonists for GluN2D subtypes may explain their rapid antidepressant effects in the absence of dissociative side effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.