Abstract
Exon skipping using antisense oligonucleotides (ASOs) has recently proven to be a powerful tool for mRNA splicing modulation. Several exon-skipping ASOs have been approved to treat genetic diseases worldwide. However, a significant challenge is the difficulty in selecting an optimal sequence for exon skipping. The efficacy of ASOs is often unpredictable, because of the numerous factors involved in exon skipping. To address this gap, we have developed a computational method using machine-learning algorithms that factors in many parameters as well as experimental data to design highly effective ASOs for exon skipping. eSkip-Finder (https://eskip-finder.org) is the first web-based resource for helping researchers identify effective exon skipping ASOs. eSkip-Finder features two sections: (i) a predictor of the exon skipping efficacy of novel ASOs and (ii) a database of exon skipping ASOs. The predictor facilitates rapid analysis of a given set of exon/intron sequences and ASO lengths to identify effective ASOs for exon skipping based on a machine learning model trained by experimental data. We confirmed that predictions correlated well with in vitro skipping efficacy of sequences that were not included in the training data. The database enables users to search for ASOs using queries such as gene name, species, and exon number.
Highlights
Exon skipping is a strategy that uses antisense oligonucleotides (ASOs) to exclude specific exons from the mature mRNA transcript of a given gene
We developed an ASO with 12-fold higher in vitro exon skipping efficacy than eteplirsen using an in silico predictive tool based on statistical modelling [12]
We previously developed a computational method using a mathematical model based on 60 descriptor candidates as well as experimental data to design highly effective ASOs for exon skipping [13]
Summary
Exon skipping is a strategy that uses antisense oligonucleotides (ASOs) to exclude specific exons from the mature mRNA transcript of a given gene. We developed an ASO with 12-fold higher in vitro exon skipping efficacy than eteplirsen using an in silico predictive tool based on statistical modelling [12].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.