Abstract

ESIPT inspired fluorescent 2-(4-benzo[d]oxazol-2-yl)naphtho[1,2-d]oxazol-2-yl)phenol was synthesized from 1-amino-3-(1,3-benzoxazol-2-yl)naphthalen-2-ol. Photophysical behavior of the synthesized compound was studied using UV–visible and fluorescence spectroscopy in polar and non-polar solvents. The synthesized naphthoxazolyl benzoxazole is fluorescent and very sensitive to the micro-environment. It shows a single absorption and dual emission in non-polar solvents with large Stokes shift originating from Excited State Intramolecular Proton Transfer while in polar solvents only a single short wavelength emission is observed. Experimental absorption and emission wavelengths are in good agreement with those predicted using the Time-Dependent Density Functional Theory (TD-DFT) [B3LYP/6-31G(d)]. The largest wavelength difference between the experimental and computed absorption maxima was 16 nm (acetonitrile) and 7 nm (ethyl acetate, THF, and 1,4-dioxane) in the short and long wavelength regions, respectively. A largest difference of 25 nm was observed for the short wavelength emission in DMF and 22 nm for the longer wavelength emission in chloroform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.