Abstract

The concept of Eshelby untwisting, the effect of an axial screw dislocation driving an intrinsically twisted nanocrystal towards a straighter configuration more consistent with long-range translational symmetry, is introduced here. Force-field simulations of nanorods built from the enantiomorphous (space groups, P3121 and P3221) crystal structures of benzil (C6H5-C(O)-C(O)-C6H5) were previously shown to twist in opposite directions, even in the absence of dislocations. Here, both right- and left-handed screw dislocations were introduced into benzil nanorods in silico. For rods built from the P3221 enantiomorph, dislocations with negative Burgers vectors increased the right-handed twisting already present in the intrinsically twisted structures without dislocations, whereas dislocations with positive Burgers vectors drove the twisted structure back towards a straight configuration, untwisting. In the dynamic simulations, the P3221 helicoid endowed with a positive Burgers vector ultimately twisted back through the straight configuration, until a helicoid of opposite sense from that of the starting structure, was obtained. The bearing of these observations on the propensity of small crystals to adopt non-polyhedral morphologies is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call