Abstract
The intelligent acquisition of phenotypic information on male tassels is critical for maize growth and yield assessment. In order to realize accurate detection and density assessment of maize male tassels in complex field environments, this study used a UAV to collect images of maize male tassels under different environmental factors in the experimental field and then constructed and formed the ESG-YOLO detection model based on the YOLOv7 model by using GELU as the activation function instead of the original SiLU and by adding a dual ECA attention mechanism and an SPD-Conv module. And then, through the model to identify and detect the male tassel, the model’s average accuracy reached a mean value (mAP) of 93.1%; compared with the YOLOv7 model, its average accuracy mean value (mAP) is 2.3 percentage points higher. Its low-resolution image and small object target detection is excellent, and it can be more intuitive and fast to obtain the maize male tassel density from automatic identification surveys. It provides an effective method for high-precision and high-efficiency identification of maize male tassel phenotypes in the field, and it has certain application value for maize growth potential, yield, and density assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.