Abstract
As an excellent single-stage object detector based on neural networks, YOLOv5 has found extensive applications in the industrial domain; however, it still exhibits certain design limitations. To address these issues, this paper proposes Efficient Scale Fusion YOLO (ESF-YOLO). Firstly, the Multi-Sampling Conv Module (MSCM) is designed, which enhances the backbone network's learning capability for low-level features through multi-scale receptive fields and cross-scale feature fusion. Secondly, to tackle occlusion issues, a new Block-wise Channel Attention Module (BCAM) is designed, assigning greater weights to channels corresponding to critical information. Next, a lightweight Decoupled Head (LD-Head) is devised. Additionally, the loss function is redesigned to address asynchrony between labels and confidences, alleviating the imbalance between positive and negative samples during the neural network training. Finally, an adaptive scale factor for Intersection over Union (IoU) calculation is innovatively proposed, adjusting bounding box sizes adaptively to accommodate targets of different sizes in the dataset. Experimental results on the SODA10M and CBIA8K datasets demonstrate that ESF-YOLO increases Average Precision at 0.50 IoU (AP50) by 3.93 and 2.24%, Average Precision at 0.75 IoU (AP75) by 4.77 and 4.85%, and mean Average Precision (mAP) by 4 and 5.39%, respectively, validating the model's broad applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.